8 research outputs found

    Unconstrained face mask and face-hand interaction datasets: building a computer vision system to help prevent the transmission of COVID-19

    Get PDF
    Health organizations advise social distancing, wearing face mask, and avoiding touching face to prevent the spread of coronavirus. Based on these protective measures, we developed a computer vision system to help prevent the transmission of COVID-19. Specifically, the developed system performs face mask detection, face-hand interaction detection, and measures social distance. To train and evaluate the developed system, we collected and annotated images that represent face mask usage and face-hand interaction in the real world. Besides assessing the performance of the developed system on our own datasets, we also tested it on existing datasets in the literature without performing any adaptation on them. In addition, we proposed a module to track social distance between people. Experimental results indicate that our datasets represent the real-world’s diversity well. The proposed system achieved very high performance and generalization capacity for face mask usage detection, face-hand interaction detection, and measuring social distance in a real-world scenario on unseen data. The datasets are available at https://github.com/iremeyiokur/COVID-19-Preventions-Control-System

    Unconstrained Face-Mask & Face-Hand Datasets: Building a Computer Vision System to Help Prevent the Transmission of COVID-19

    Get PDF
    Health organizations advise social distancing, wearing face mask, and avoiding touching face to prevent the spread of coronavirus. Based on these protective measures, we developed a computer vision system to help prevent the transmission of COVID-19. Specifically, the developed system performs face mask detection, face-hand interaction detection, and measures social distance. To train and evaluate the developed system, we collected and annotated images that represent face mask usage and face-hand interaction in the real world. Besides assessing the performance of the developed system on our own datasets, we also tested it on existing datasets in the literature without performing any adaptation on them. In addition, we proposed a module to track social distance between people. Experimental results indicate that our datasets represent the real-world's diversity well. The proposed system achieved very high performance and generalization capacity for face mask usage detection, face-hand interaction detection, and measuring social distance in a real-world scenario on unseen data. The datasets will be available at https://github.com/iremeyiokur/COVID-19-Preventions-Control-System.Comment: 9 pages, 4 figure

    A Survey on Computer Vision based Human Analysis in the COVID-19 Era

    Full text link
    The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals. Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications. These developments also triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication schemes, on the other. Especially important here, are computer vision techniques that focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions introduced by the mandates for facial masks. Such computer vision based human analysis techniques include face and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression estimation procedures, models for detecting face-hand interactions and many others, and have seen considerable attention over recent years. The goal of this survey is to provide an introduction to the problems induced by COVID-19 into such research and to present a comprehensive review of the work done in the computer vision based human analysis field. Particular attention is paid to the impact of facial masks on the performance of various methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets useful for the development and evaluation of methods for COVID-19 related applications is also provided. Finally, to help advance the field further, a discussion on the main open challenges and future research direction is given.Comment: Submitted to Image and Vision Computing, 44 pages, 7 figure

    Face-Dubbing++: Lip-Synchronous, Voice Preserving Translation of Videos

    Get PDF
    In this paper, we propose a neural end-to-end system for voice preserving, lip-synchronous translation of videos. The system is designed to combine multiple component models and produces a video of the original speaker speaking in the target language that is lip-synchronous with the target speech, yet maintains emphases in speech, voice characteristics, face video of the original speaker. The pipeline starts with automatic speech recognition including emphasis detection, followed by a translation model. The translated text is then synthesized by a Text-to-Speech model that recreates the original emphases mapped from the original sentence. The resulting synthetic voice is then mapped back to the original speakers' voice using a voice conversion model. Finally, to synchronize the lips of the speaker with the translated audio, a conditional generative adversarial network-based model generates frames of adapted lip movements with respect to the input face image as well as the output of the voice conversion model. In the end, the system combines the generated video with the converted audio to produce the final output. The result is a video of a speaker speaking in another language without actually knowing it. To evaluate our design, we present a user study of the complete system as well as separate evaluations of the single components. Since there is no available dataset to evaluate our whole system, we collect a test set and evaluate our system on this test set. The results indicate that our system is able to generate convincing videos of the original speaker speaking the target language while preserving the original speaker's characteristics. The collected dataset will be shared
    corecore